
Performant, persistent procedurally

generated open worlds

Light Up Research

Contents

Contents 2

The intended outcome 3

Existing system examples 3

Maintaining performant gameplay 5

Solutions 5

Tiles & world streaming 5

Seed based generation 6

Navigation 6

Navmesh baking 7

Moving navmeshes 7

Per location navmesh 8

AI LOD 8

Our recommendations 10

Summary 12

The intended outcome
There are two game styles that have become particularly prevalent within the last decade: open world,

sandbox style games, and procedurally generated (often within the subset of roguelike / roguelite)

games. Open world games typically have a non- or semi- linear structure of game with a limited concept

of levels; instead the player is free to explore areas as they wish. The world is often populated with side

missions / quests that are optional though provide the player with some benefit, with a single larger

main quest that is typically more story-driven.

Procedurally generated games have core game mechanics that remain stable with a huge number of

permutations of game levels / game world, procedurally generated at the start of a particular play

session. Procedural generation is also used in a semi-automated way to augment the authoring of

content within more linear game worlds, often used in the creation of larger open worlds when it would

be impractical to manually detail every feature.

There are few examples of procedurally generated open worlds that combine both mechanics in a single

game. There are a number of reasons for this:

- Open worlds often have a large amount of hand authored content that, while optional, is intended for

the player to see and consumes a large amount of development effort

- There are a number of engineering problems that hinder the performance of larger worlds that are

generated on runtime

- Retaining persistence and some level of simulation in an open world is difficult, with limited proven

patterns and architectures in this space

There is no well known game example that provides performant, procedurally generated open worlds;

while there are examples of the individual components of this framework, it was unclear whether an

‘open world’ by modern game standards could be performantly run after being procedurally generated.

This research paper tackles the second of these challenges: performance.

Existing system examples
As mentioned there are examples of the individual components of the problem statement at hand, the

most well known of which are described below.

Note that these descriptions are based on gameplay observations rather than source code reviews; all of

the games described below are closed source.

Game Performant Persistent Procedural Open Notes

simulation generation world

Minecraft Yes Partial Yes Yes Partial persistence - ‘blocks’
placed by the player remain,

but no simulation occurs
beyond a radius surrounding

the player

Skyrim Yes No No Yes

MMOs Yes Partial Usually no Partial Partial persistence - MMOs
usually run on ‘zones’ that

separate players or reset on a
regular basis.

Performance - given MMOs
can use a server-client

framework with an arbitrary
server size, performance
options are much greater

Partial open world - MMOs
usually have predetermined
quests / activities that are

semi-linear based on player
experience

Breath of
the Wild

Yes No No Yes

Dwarf
Fortress

Partial Partial Yes Yes Partial performance - low res
graphics, known performance

issues when running the
game for a longer period of

time
Partial simulation - extremely
(possibly highest) simulation

fidelity though some
elements of simulation radius

/ bubble

Starbound Yes No Yes Yes Player actions on ‘planets’
are persistent, simulation
does not take place when

player is not present

Maintaining performant gameplay
Player devices are ever more powerful which enables a greater level of compute power available to

game developers. However there are limitations, particularly for intense simulation mechanics in games.

There are many options available for dealing with rendering limitations (LOD systems, distance fog,

occlusion with carefully placed terrain) and while these may detract from the overall experience of the

player, they typically do not affect the actual gameplay. This is unlike actor and world simulation, which

must occur for the gameplay to actually take place, and usually occurs on the CPU.

The main challenges in procedurally generated open worlds (some shared by other game types but

exacerbated in these cases) are:

- AI agent simulation and decisioning

- Physics simulations

- Navigation

- Runtime world generation

- Limited static occlusion

Solutions
As part of the research we undertook we explored four areas with potential for maintaining

performance:

- Tiles & world streaming

- Seed based generation

- Navigation options

- AI LOD

Tiles & world streaming

Despite the power of modern computers, few devices have the computational power to simply render

and simulate a world of any significant size that could be considered open world. Some form of tiling /

chunking is typically used, where tiles surrounding the player are loaded, and tiles further away from the

player are unloaded. This provides a simulation ‘bubble’ surrounding the player where action and

gameplay takes place, and avoids using computational power for areas where nothing is occurring.

Similarly world streaming provides a way to ‘stream’ the world into being as the player travels in a

certain direction.

This poses a problem for open world simulation focused games, where agents and entities cannot simply

be unloaded if they happen to be on a tile far away from the player. This can cause a phenomenon where

time seems to pass only where the player is present, which is in a way true as this is only where

simulation occurs. Alternatively it can cause randomly generated entities to simply disappear out of

existence as their state is unloaded from memory.

We propose an additional ‘persistence layer’ that maintains agent and entity state irrespective of

whether they have been loaded in a tile or not. The data stored about entities in the persistence layer is

of a higher level than that of the entity itself, but retains enough state to ensure that actions the player

has taken relating to entities persist beyond the time they take place.

When a tile is loaded (or generated as in the case of seed based generation detailed below), the

TileManager makes a request to the PersistenceManager to check if there are any persistent entities in

that tile. If there are, the TileManager will match the persistent entity to the entity it was going to

generate and update the state accordingly. Similarly, when a tile is due to be unloaded, the persistent

state of all persistent entities is stored in the PersistenceManager.

Persistence in procedurally generated open worlds is a detailed topic of its own accord, but the

persistence layer described here enables a good level of performance while retaining an appropriate

level of persistence in a tile / chunk based or world streaming setup.

Seed based generation

Most procedural generation relies on some form of randomness or noise. It is relatively common practise

to use an initial piece of data or ‘seed’ that informs subsequent stages of random input, but allows a

deterministic output i.e. a specific seed will also result in the same output.

Combining seed based generation with a tile based system described in the previous section provides a

mechanism to generate sections of the world in runtime. When further combined with asynchronous

generation, a performant means of loading near endless tiles becomes available, assuming tile

generation can start and finish before the player needs to be able to access any content on a particular

tile.

This removes the need to load relatively large game assets into memory, specifically terrain meshes and

textures, though adds cost to the cpu in the generation of tiles. We have found this an acceptable

trade-off with deliberation and tuning of the following factors:

- Tile size

- Player speed

- Player visibility

- Spawn time generation complexity for individual entities

Navigation

Navigation and pathfinding is a common requirement in games yet remains difficult and non-trivial, in

part because of performance trade-offs. We explored three approaches for solving navigation:

- Navmesh baking

- Moving navmeshes

- Per location Navmesh

Navmesh baking

Many games use a pre-runtime form of this approach: baking a navigation mesh (navmesh) based on a

terrain / level plus objects that need to be taken into account. A navmesh may contain areas that are

simply passable or impassable, or may also contain ‘costs’ for area types eg a road is preferable to a

swamp, so the former will have a lower cost and the latter a higher cost when agents are choosing a

path.

However, non-procedural games have the benefit of being able to take any amount of time to bake the

navmesh, a process which can take tens of minutes for particularly large or complex worlds, or when

calculated to a low level of granularity. This is not feasible for procedurally generated worlds where the

computational cost is already high given the need to compute the world itself.

In order to make this approach work, we recommend the following considerations:

- Some form of navmesh slicing, potentially on a tile by tile basis if using a tile based system as

mentioned above

- Asynchronous navmesh generation, where navmeshes can be generated without impacting frame rate

- Navmesh LOD - generating a very basic navmesh first followed by subsequent more detailed iterations

(potentially just one additional iteration) with the final level of granularity desired

- Navmesh caching - retaining generated navmeshes in memory if there is an impact to tile generation

With these considerations we have found tile-based navmesh baking to be a reasonable approach.

Moving navmeshes

Rather than bake a navmesh for all areas a player might explore, one alternative is to constantly update a

single navmesh that surrounds the player to a predetermined distance, following the players movements

to ensure there is always a navigation mesh in the players surrounding area.

Typically this area is smaller than the currently loaded world (and may even be smaller than a single tile

in a tile-based system), which means although the overall computation over time for calculating runtime

navmeshes may be higher, the computation at any given time is typically lower. Additionally if the player

doesn’t move for a length of time or moves a limited distance, there is no additional computational cost

for navmesh generation.

This approach can work if the surrounding area is sufficiently large to encompass entities the player will

encounter as soon as they would otherwise be encountered, and when combined with separate

simulation logic for non navmesh navigation for offscreen / distant agents can work in a larger world

simulation as well. However, we have found that the knock on impact of needing to tune entity

behaviour to account for a moving navmesh outweighs the benefits, as agent navigation abilities are

decoupled from agent distance simulation, whereas these would typically be combined. In other words,

agents far away or on an offloaded tile usually don’t need a navmesh - those that are close by or on a

loaded tile usually do.

Per location navmesh

To reduce the total navmesh calculation cost an alternative approach is to only bake navmeshes at key

locations that entities will be encountered at. This could include settlements, enemy bases etc. This

ensures that where there is otherwise empty space in the world that no entity would be using for

navigation, there is no cost expended generating a navmesh for those spaces.

When combined with a player-centric moving navmesh there is some conceptual merit to this approach -

navmesh generation only occurs where agents reside, and any player encounters are covered by the

player navmesh. However we have found that the effectiveness of this approach depends on the wider

game mechanics and world style.

Where a world has:

- A greater distance between agents that need to navigate

- terrain intended to be navigated by the player alone (potentially with a party of NPCs)

- Entities that do not travel beyond their designated ‘homes’

then this approach can work. However, when a world has:

- A smaller distance between agents that need to navigate (thus reducing the optimisation and

potentially creating multiple overlapping navmeshes)

- Terrain intended to be navigated by all a variety of agents, not just the player

- Entities encountered outside of designated homes

then this approach has limited performance benefit, and can in some cases limit the game’s mechanics.

Overall our recommendation is that a runtime navmesh baking approach is taken for the best balance of

performance and functionality, though where this calculation can occur before runtime, it should be.

Where performance is critical and free roaming agents are not required, a moving navmesh approach is

recommended.

AI LOD

The concept of a Level Of Detail (LOD) system in games is well known, predominantly for rendering. The

application of LOD to AI is also not new, though is rarer in practice and has various versions depending

on the intended outcome (simulation on / off, LOD Broker among others).

The majority of commercially implemented AI LOD systems aim to increase immersion through agents as

background material - populated cities and villages with crowds. Generally the AI LOD systems function

similarly in practise to the ‘simulation bubble’ idea, though with additional layers to the bubble. There

are few if any AI LOD systems that provide a world simulation with activities that take place with or

without the player's input.

This is for good reason: it is extremely difficult to control the player experience when agents are free to

do as they wish, let alone develop and test in this environment. Previous high profile attempts at this

have resulted in a cut down, lighter version of the simulation (e.g. Shenmue, Skyrim’s Radiant AI) as

often critical events could take place before the player reaches or even becomes aware of a location.

Assuming a non-linear, fully open world game framework, this can be considered a positive assuming it is

bounded. For instance, in an open world game with a main ‘questline’, the player can take as much time

as they choose in engaging with sidequests, activities, exploration etc, and the main questline will

remain static and unchanging until the player progresses it. This avoids key characters in the main

questline changing state so much that the questline narrative becomes contradictory or unable to be

fulfilled.

In an open world game without a main questline, this can increase immersion in a number of ways -

imagining a typical hero vs villain quest, over the course of the player’s activities the previously known

villain could become stronger, or defeated by a different entity that takes the original villain’s place, or

the villain could defeat a known ally.

Typically simulating every action of every entity in a game world is beyond the compute power available

to even modern player devices; this is where an AI LOD system becomes useful. It is of no value to a

player for finely grained AI simulation to take place if the player cannot experience the simulation itself,

but it is of value to a player to experience the outcome of the simulation. With an AI LOD system, an

approximate simulation outcome can be reached without the need for the same level of compute power

for more distant entities.

For example, rather than simulating a minor NPC going about their day, pathfinding from place to place,

undertaking the activities that they would normally undertake minute after minute, the approximate

results of those activities can be calculated at an hourly, daily or even weekly level. Suppose an NPC

farmer is capable of producing ten units of crops per game day in ‘real time’ simulation, the same

outcome can be achieved without computing the simulation that creates ten units of crops.

The key to an AI LOD system is to ensure that all of the ‘minor’ effects of a finely grained simulation are

also covered (suppose in the NPC farmer example they also build skills in farming, build relationships

with other NPCs, and have a random chance of events happening) - otherwise odd scenarios can occur

when a player leaves a location, returns some time later, and finds specific elements of the location have

advanced but others have remained stagnant. It is also important to ensure the ‘pace’ of advancement is

the same - otherwise players will find locations they spend more time in further advanced than others,

which can result in a loss of credibility in immersion.

Our recommendations
To cater for situations where persistent agent simulation is desired irrespective of distance to the player,

we propose a system that draws on several of the concepts mentioned previously. We call this system

the “Persistent Predictive World”.

Our recommended architecture has several layers:

- Persistence Manager

- LOD Manager

- Tile Manager

The Persistence Manager retains the state of all entities that require simulation to some degree. This is

true irrespective of their visibility, distance to the player, or any other state. The Persistence Manager

should hold a minimal data structure relating to each entity, as the list / array / other container it holds

will be iterated through on a highly regular basis. A side benefit of the Persistence Manager is that it can

also be used as a core component in a save / load mechanism.

The LOD Manager covers LOD for four sub aspects - AI, Physics, Animation and Rendering - with similar

but not necessarily the same LOD distances.

For AI LOD, AI should be designed such that actions can be summed up / calculated with assumptions -

for example the NPC farmer described above who can produce a consistent amount of units of crops -

combine with all of the minor effects that will also take place as well as random events to reflect the

chaotic nature of reality. High level checks can occur for interactions with other agents - e.g. were two

agents in the same location at the same hour / day / week, rather than simulating the specific location

and pathfinding to calculate whether an interaction took place. Coarsely grained simulation will never

exactly model complex simulation but can be tuned to advance the same way at the same rate - this

requires trial and error and is specific to the exact nature of the simulation. An AI LOD system could also

be linked to an optional story / drama manager with no significant performance considerations.

Physics and Animation systems should function the same way as a traditional Rendering LOD system -

the further from the player, the lower the level of detail. Animations are typically more difficult to alter

levels of details without manually creating additional animations, so are usually more binary (i.e. play

animations or don’t play animations) - some quick win Animation LOD benefits can be achieved with

fewer update cycles to run the animation, or the creation of cross-entity standard animations for

common tasks. Similarly Physics LOD systems should gain most benefit from either simulating or not

simulating physics depending on distance - again quick wins can be achieved with fewer update cycles or

more basic physics checks (e.g. AABB collisions detection rather than raycasts).

The Tile Manager will be a necessity in almost any open world case where some element of world

streaming is needed, whether known as tiles or ‘chunks’, a tile will function as a discrete group of data to

be loaded at a particular point in time. While the tile manager in our recommended architecture

functions similarly, there should be a strong interface between the Persistence Manager and the Tile

Manager that enables entities that are on a tile due to be ‘unloaded’ retain some element of their state

in the Persistence Manager, and entities that already exist in the Persistence Manager and are queued on

a tile due to be ‘reloaded’ are connected to the records in the Persistence Manager rather than

duplicated.

This additionally can enable relationships between entities that exist across tiles, without needing to be

encountered by the player and generated first. Conceptually this can be thought of as an additional

conceptual layer above the tile data that is somewhat like a cache or a queue, where an entity / location

/ object could be procedurally generated at runtime and some data stored in the Persistence Layer, but

not actually fully generated up until the point the tile it exists in is generated for the first time.

The exact nature of the tile manager will depend primarily on the compute / memory / disk budget

available; tiles can be generated at the point they are encountered for the first time, then stored to disk

for reloading at a later time, or regenerated from seeds every time. The Tile Manager can cheaply ‘guess’

which tiles to preload based on a player’s direction, movement, active quest, and other factors. A more

advanced ‘guess’ could be made based on the player’s previous activities and frequently visited

locations, though this will be computationally more expensive. Generally asynchronous loading of tiles is

recommended as this avoids loading screens / loading bars, though a last resort loading bar is preferable

to a player encountering a partially loaded tile.

Navmeshes are a significant consideration as if these are generated at runtime the computational cost is

high; even if tile terrains, trees and other relatively static objects are regenerated, our recommendation

is that navmeshes are cached, stored and reloaded as needed.

Summary
This research project was intended to identify whether persistent procedurally generated open worlds in

games could be managed performantly, and explore and advance techniques used to achieve this goal.

Our conclusion is that through the refined and advanced use of some traditional techniques (seed based

generation, tiles, LOD) and new techniques (persistence management, runtime navigation etc.) then this

is an achievable, though difficult, task.

